ZAGENO
Results: 1-12 of 100+ products
Sort by:
Show as:

Electrophoresis on Zageno

100 bp DNA Ladder ready to use Bioron
Reagent Type DNA ladder Form Powder Quantity 50 µg, 250 µg
From $ 39.00 (50 µg)
Sizes 2 (50 - 250 µg)
Catalog IDs 306009, 306017
Added to comparison view - remove
View Product
DNAmark 1kb PLUS Marker G-Biosciences
Reagent Type DNA ladder Form Powder Quantity 50 µg
From $ 57.00 (50 µg)
Sizes 1 (50 µg)
Catalog IDs 786-854
Added to comparison view - remove
View Product
Kaleidoscope™ Standards Bio-Rad
Reagent Type Protein ladder Form Suspension Quantity 500 µl, mixture of ten multicolor recombinant proteins (10–250 kD), 50 or 250 applications
From $ 140.00 (50 Applications)
Sizes 2 (50 - 250 Applications)
Catalog IDs 1610375, 1610395
Added to comparison view - remove
View Product
Pierce™ High Capacity Streptavidin Agarose Thermo Scientific
Reagent Type / Form / Quantity /
From (on request)
Sizes 1 (5 ml)
Catalog IDs 20359
Added to comparison view - remove
View Product
Hoefer™ Mighty Small™ II Mini Vertical Electrophoresis Systems Hoefer
Reagent Type / Form / Quantity /
From (on request)
Sizes 1 (1 Unit)
Catalog IDs 11741789
Added to comparison view - remove
View Product
Chameleon 800 Pre-stained Protein Ladder, 500ul, P/N LI-COR Biotechnology
Reagent Type / Form / Quantity /
From (on request)
Sizes 1 (500 µl)
Catalog IDs 928-80000
Added to comparison view - remove
View Product
SYPRO® Orange Protein Gel Stain Sigma-Aldrich
Reagent Type / Form / Quantity /
From (on request)
Sizes 1 (50 µl)
Catalog IDs S5692-50UL
Added to comparison view - remove
View Product
Opti-Protein XL Marker Applied Biological Materials
Reagent Type Protein ladder Form Suspension Quantity 500 µl
From $ 110.00 (500 µl)
Sizes 1 (500 µl)
Catalog IDs G266
Added to comparison view - remove
View Product
NuPAGE™ 10% Bis-Tris Protein Gels, 1.0 mm, 12-well Invitrogen
Reagent Type / Form / Quantity /
From (on request)
Sizes 1 (10 Gels)
Catalog IDs NP0302BOX
Added to comparison view - remove
View Product
GeneRuler 100 bp Plus DNA Ladder, ready-to-use Thermo Scientific
Reagent Type / Form / Quantity /
From (on request)
Sizes 1 (50 µg)
Catalog IDs SM0323
Added to comparison view - remove
View Product
GeneRuler 1 kb Plus DNA Ladder, ready-to-use Thermo Scientific
Reagent Type / Form / Quantity /
From (on request)
Sizes 1 (50 µg)
Catalog IDs SM1334
Added to comparison view - remove
View Product
RunBlue Native Mini Protein Gels 10% Expedeon
Reagent Type Gels Form Precast gels Quantity /
From (on request)
Sizes 2 (1 Product)
Catalog IDs BCN01012, BCN01027
Added to comparison view - remove
View Product

Basic Electrophoresis Technique

1) Cast gel if necessary and prepare running buffer

2) Fill the electrophoresis tank with running buffer so that the gel will be completely submerged

3) Add/insert gel

4) Mix the sample and standard (ladder) with loading dye and load a small volume of each into each well on the gel

5) Connect power supply electrodes to the appropriate ports

6) Turn on the voltage supply and set the current to the appropriate setting

7) Run the bands until they have separated as required

8) Turn off power and remove gel

Systems

An electrophoresis system usually compromises of a tank with chambers, casters, plates, spacers, combs and a power supply. They are set up to run either vertical (polyacrylamide) or horizontal (agarose) electrophoresis and provide the framework for running a gel.

Electrophoresis Gels

Gels can be purchased precast or can be made up in the lab from a powder or solution. The two most common types of gel used for electrophoresis are agarose and acrylamide. All gels contain or must be created with equally-separated wells in which the sample can be loaded so that it can be pulled through the middle of the gel.

Agarose gels are used to separate DNA fragments. The pore size of agarose gels is not consistent; high concentration agarose gels are used to separate smaller DNA fragments and vice versa.

Acrylamide gels have a consistent pore size and are used for proteins ranging from 5-2000 kDa. Sodium Dodecyl Sulfate Polyacrylamide gel electrophoresis (SDS-PAGE) is a core step in western blotting. In this method proteins are mixed with SDS to denature them; unfolding them into a linear shape and applying a negative charge, both which are necessary for successful electrophoresis.

Molecular Standards, (DNA/RNA/Protein Ladders)

Standards (or ladders) contain several fragments of known lengths or molecular weights (MW). When ran on a gel this solution forms a series of bands which allow researchers to estimate the molecular weight of the test sample, (ran in parallel) and therefore purify the target molecule by its length or MW. The fragment can then be identified if it was previously unknown.

Dyes/Stains

Loading Dyes are mixed with the sample before loading onto the gel; they increase the density of the nucleic acid or protein sample, thus sinking it into the well and preventing leakage, while also providing visual confirmation that the sample has migrated. The dye is also negatively charged so that it moves in the same direction as the nucleic acid or protein.

Stains , (e.g. fluorescent), help visualize the resulting bands after electrophoresis, under either visible or UV light. Ethidium Bromide, a UV stain, is commonly used for DNA and RNA.

Buffers/Reagents

Running buffer is required carry the current throughout the gel by providing ions while maintaining constant conditions such as pH. It also aids in keeping the gel cool, as the current running across the gel creates excess heat, which can cause agarose gels to melt.

The most common buffers used for agarose gels (and making up running buffers) are TBE (tris-borate-EDTA) and TAE (Tris-acetate-EDTA). TBE gives better resolution and therefore sharper bands, in particular for fragments larger than 1kb. However, TBE does make DNA extraction difficult. TAE is more popular than TBE, yet has a lower buffering capacity.

2D and 3D Electrophoresis

2D electrophoresis is used to separate a mixture of proteins by two properties; isoelectric point (pI) and molecular weight (MW), and therefore in two dimensions.

3D electrophoresis is a relatively new technology which separates proteins by native size, pI, and molecular mass.

Expand your understanding in our Knowledge Section. Perfect your experiments with our Troubleshooting Guides. Join in the discussion within our Community. Learn about ZAGENO at How It Works.

Video and Image Credits

Video: SciencePrimer/YouTube