Free Shipping

Price Guarantee

Full Support

Results: 1-12 of 448 products
Sort by:
Sort by

Show as:

Gene Editing Kits on ZAGENO

Gene editing is the process of inserting, deleting / silencing, or replacing DNA sequences within a genome. Such techniques utilize methods that frequently can be observed in nature; for example, gene silencing techniques make use of a mechanism found in the nematode worm Caenorhabditis elegans. The purpose of gene modification, besides scientific research, are for gene therapy and is of great clinical interest, offering potential cures for genetic ailments like certain types of cancer and Huntington’s disease. Examples of gene editing methods are CRISPR, gene silencing, gene transfer, gene modification, and in vitro transcription.

Expand your understanding in our Knowledge Section. Perfect your experiments with our Troubleshooting Guides. Join in the discussion within our Community. Learn about ZAGENO at How It Works.

Gene Editing Kits and Methods


CRISPR (Clustered regularly-interspaced short palindromic repeats) was originally discovered in E. coli during the 1980s.

Gene Silencing

Gene Silencing refers to a series of molecular biology techniques that reduces the transcription or translation of a gene.

Gene Editing Controls

Good gene editing controls are a critical tool for troubleshooting and ensuring that the transfer worked according to plan.

Gene Transfer

Gene Transfer is the process of inserting a specific coding sequence into a cell, either as a plasmid or as a genomic insert.

Gene Modification

Gene Modification refers to numerous molecular biological techniques that can introduce mutations into double stranded DNA.

In Vitro Transcription

In vitro transcription is a method which enables you to synthesize RNA in the lab, which can be used for methods such as blot hybridizations.


Clustered regularly interspaced short palindromic repeats (CRISPR) was discovered in a prokaryotic immune defense system against foreign DNA. This technique targets specific genes and interrupts or manipulates these regions of DNA for either gene knockout or gene knock-in.

If you have any problems with your experiments, visit our CRISPR Troubleshoot.

Gene Silencing

Silencing refers to the suppression of genetic material, preventing the synthesis of proteins. RNA interference for silencing introduces foreign RNA, which binds to messenger RNA to either increase or decrease activity.

If you have any problems with your experiments, visit our Gene Silencing Troubleshoot.

Gene Editing Controls

Given the sensitivity and implications of a faulty gene editing procedure, controls enable researchers to monitor and troubleshoot to see whether the gene transfer worked according to plan.

These controls can be either:

Gene Transfer

Plasmid transfection is used to assess the function of a specific gene in its cellular context. With transfection and overexpression of a specific gene, researchers can evaluate the workings of that particular gene.

Transduction refers to the use of viral vectors of for genetic transfer, while transformation introduces recombinant plasmids into bacterial cells, which then express the newly acquired genetic material.

If you have any problems with your experiments, visit our Gene Transfer Troubleshoots on our troubleshooting page.

Gene Modification

Another application to manually edit DNA is site-directed mutagenesis by PCR-driven overlap extension. This method is used to generate DNA fragments in a way that specific mutations are introduced by the use of overlapping PCR. These fragments can then serve as a primary template for further editing applications.

If you have any problems with your experiments, visit our Gene Modification Troubleshoot.

In Vitro Transcription

Many biological applications require molecular probes, including labeling and real-time PCR. In vitro transcription can make use of both radioactively labeled and non-isotopically labeled probes. The capability to manufacture these probes in the laboratory helps facilitate a wide variety of procedures like RNA amplification, expression studies, and structural analysis.

If you have any problems with your experiments, visit our In Vitro Transcription Troubleshoot.


Have your say about this product!

JD Watson

e.g. [email protected]