Experience more EUREKA moments
CUSTOMER SERVICE +1 617 855 5944 +1 617 855 5944

ZFN & TALEN

Score 0.10

CompoZr® Knockout ZFN Kit- CHO SLC35A1 SKU : ZFNSLC35A1

Sigma-Aldrich

Antigen
/
/
Host
/
/
Applicable Processes
/
/
From
$ 12,742.00 (1 Kit)
Sizes
1 (1 Kit)
Catalog IDs
ZFNSLC35A1-1KT
Added to comparison remove item

sgRNA, shRNA, siRNA & miRNA

Score 8.38

MISSION® siRNA SKU : SIHK1021

Sigma-Aldrich

From
$ 25.75 (0.25 nmol)
Sizes
1 (0.25 nmol)
Catalog IDs
SIHK1021-0.25NMOL
Added to comparison remove item

sgRNA, shRNA, siRNA & miRNA

Score 8.37

MISSION® siRNA SKU : SIHK1026

Sigma-Aldrich

From
$ 25.75 (0.25 nmol)
Sizes
1 (0.25 nmol)
Catalog IDs
SIHK1026-0.25NMOL
Added to comparison remove item

sgRNA, shRNA, siRNA & miRNA

Score 8.38

MISSION® siRNA SKU : SIHK1029

Sigma-Aldrich

From
$ 25.75 (0.25 nmol)
Sizes
1 (0.25 nmol)
Catalog IDs
SIHK1029-0.25NMOL
Added to comparison remove item

sgRNA, shRNA, siRNA & miRNA

Score 8.37

MISSION® siRNA SKU : SIHK1057

Sigma-Aldrich

From
$ 25.75 (0.25 nmol)
Sizes
1 (0.25 nmol)
Catalog IDs
SIHK1057-0.25NMOL
Added to comparison remove item

sgRNA, shRNA, siRNA & miRNA

Score 8.37

MISSION® siRNA SKU : SIHK1060

Sigma-Aldrich

From
$ 25.75 (0.25 nmol)
Sizes
1 (0.25 nmol)
Catalog IDs
SIHK1060-0.25NMOL
Added to comparison remove item

sgRNA, shRNA, siRNA & miRNA

Score 8.37

MISSION® siRNA SKU : SIHK1080

Sigma-Aldrich

From
$ 25.75 (0.25 nmol)
Sizes
1 (0.25 nmol)
Catalog IDs
SIHK1080-0.25NMOL
Added to comparison remove item

sgRNA, shRNA, siRNA & miRNA

Score 8.37

MISSION® siRNA SKU : SIHK1093

Sigma-Aldrich

From
$ 25.75 (0.25 nmol)
Sizes
1 (0.25 nmol)
Catalog IDs
SIHK1093-0.25NMOL
Added to comparison remove item

sgRNA, shRNA, siRNA & miRNA

Score 8.37

MISSION® siRNA SKU : SIHK1100

Sigma-Aldrich

From
$ 25.75 (0.25 nmol)
Sizes
1 (0.25 nmol)
Catalog IDs
SIHK1100-0.25NMOL
Added to comparison remove item

sgRNA, shRNA, siRNA & miRNA

Score 8.37

MISSION® siRNA SKU : SIHK1101

Sigma-Aldrich

From
$ 25.75 (0.25 nmol)
Sizes
1 (0.25 nmol)
Catalog IDs
SIHK1101-0.25NMOL
Added to comparison remove item

sgRNA, shRNA, siRNA & miRNA

Score 8.37

MISSION® siRNA SKU : SIHK1112

Sigma-Aldrich

From
$ 25.75 (0.25 nmol)
Sizes
1 (0.25 nmol)
Catalog IDs
SIHK1112-0.25NMOL
Added to comparison remove item

sgRNA, shRNA, siRNA & miRNA

Score 8.37

MISSION® siRNA SKU : SIHK1115

Sigma-Aldrich

From
$ 25.00 (0.25 nmol)
Sizes
1 (0.25 nmol)
Catalog IDs
SIHK1115-0.25NMOL
Added to comparison remove item

Can't find what you are looking for? Request the product now and we'll find it for you (typically within 1 hour).

Request Product

Gene editing is the process of inserting, deleting / silencing, or replacing DNA sequences within a genome. Such techniques utilize methods that frequently can be observed in nature; for example, gene silencing techniques make use of a mechanism found in the nematode worm Caenorhabditis elegans. The purpose of gene modification, besides scientific research, are for gene therapy and is of great clinical interest, offering potential cures for genetic ailments like certain types of cancer and Huntington’s disease. Examples of gene editing methods are CRISPR, gene silencing, gene transfer, gene modification, and in vitro transcription.

Gene Editing Kits and Methods

CRISPR

CRISPR (Clustered regularly-interspaced short palindromic repeats) was originally discovered in E. coli during the 1980s.

Gene Silencing

Gene Silencing refers to a series of molecular biology techniques that reduces the transcription or translation of a gene.

Gene Editing Controls

Good gene editing controls are a critical tool for troubleshooting and ensuring that the transfer worked according to plan.

Gene Transfer

Gene Transfer is the process of inserting a specific coding sequence into a cell, either as a plasmid or as a genomic insert.

Gene Modification

Gene Modification refers to numerous molecular biological techniques that can introduce mutations into double stranded DNA.

In Vitro Transcription

In vitro transcription is a method which enables you to synthesize RNA in the lab, which can be used for methods such as blot hybridizations.

CRISPR

Clustered regularly interspaced short palindromic repeats (CRISPR) was discovered in a prokaryotic immune defense system against foreign DNA. This technique targets specific genes and interrupts or manipulates these regions of DNA for either gene knockout or gene knock-in.

If you have any problems with your experiments, visit our CRISPR Troubleshoot.

Gene Silencing

Silencing refers to the suppression of genetic material, preventing the synthesis of proteins. RNA interference for silencing introduces foreign RNA, which binds to messenger RNA to either increase or decrease activity.

If you have any problems with your experiments, visit our Gene Silencing Troubleshoot.

Gene Editing Controls

Given the sensitivity and implications of a faulty gene editing procedure, controls enable researchers to monitor and troubleshoot to see whether the gene transfer worked according to plan.

These controls can be either:

Gene Transfer

Plasmid transfection is used to assess the function of a specific gene in its cellular context. With transfection and overexpression of a specific gene, researchers can evaluate the workings of that particular gene.

Transduction refers to the use of viral vectors of for genetic transfer, while transformation introduces recombinant plasmids into bacterial cells, which then express the newly acquired genetic material.

If you have any problems with your experiments, visit our Gene Transfer Troubleshoots on our troubleshooting page.

Gene Modification

Another application to manually edit DNA is site-directed mutagenesis by PCR-driven overlap extension. This method is used to generate DNA fragments in a way that specific mutations are introduced by the use of overlapping PCR. These fragments can then serve as a primary template for further editing applications.

If you have any problems with your experiments, visit our Gene Modification Troubleshoot.

In Vitro Transcription

Many biological applications require molecular probes, including labeling and real-time PCR. In vitro transcription can make use of both radioactively labeled and non-isotopically labeled probes. The capability to manufacture these probes in the laboratory helps facilitate a wide variety of procedures like RNA amplification, expression studies, and structural analysis.

If you have any problems with your experiments, visit our In Vitro Transcription Troubleshoot.